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Abstract

Bitcoin is a decentralized digital cash system on top of a distributed, append-only public ledger. Bitcoin transactions
are recorded in the public ledger, and the ledger is maintained by a network of nodes via proof-of-work mechanism.
Among these network nodes, some are in “full mode”, and the remaining are in certain “light” modes. Each full-mode
node records the complete history of transactions, which allows the node to verify the validity of new transactions by
itself. The nodes in a light mode may only store a partial history of transactions, or a succinct version of the history;
this allows the Bitcoin protocol to be executed in computing devices where storage is limited.

In the past years, the security of Bitcoin-like protocols has been intensively studied. However, previous investiga-
tions are mainly focused on the single-mode version of Bitcoin protocols, i.e., the protocol running among full-mode
nodes. In this paper, we initial the study of multi-mode cryptocurrency protocols. We generalize the recent framework
by Garay et al (Eurocrypt 2015) with new security de�nitions, so that the security of a larger class of protocols can be
analyzed.

As an immediate application of our new framework, we analyze the security of existing blockchain pruning pro-
posals for Bitcoin and Ethereum aiming to improve the storage e�ciency of network nodes by pruning unnecessary
information from the ledger.

1 Introduction

The rise of blockchain technologies. Bitcoin is a decentralized digital cash system on top of a distributed, append-only
public transaction ledger. The public ledger is maintained by a network of nodes via the so-called proof-of-work mech-
anism, and only valid transactions are supposed to be recorded in the ledger. The techniques behind have proven
to be very promising. Besides cryptocurrencies, many interesting applications such as decentralized crowd funding,
decentralized automatous organization, come to the reality.
Multi-mode cryptocurrency, and the advantage of having multiple modes. Bitcoin-like cryptocurrencies are often multi-
mode systems: some network nodes are running in “full mode”, and each full-mode node records and checks the com-
plete history of transactions, and is capable of verifying the integrity of history and the validity of new transactions
by itself; the remaining nodes may run in certain “light modes”, and they might store only a partial history of trans-
actions. More concretely, Bitcoin has multiple modes by design: in its whitepaper by Nakamoto [14], a light mode
called “SPV (Simple Payment Veri�cation)” mode has been introduced1. Later, in the version 0.11 of Bitcoin Core [1],
another light mode called “pruning” mode has been introduced. Similarly, Ethereum [24] is also a multi-mode system.
For example, Parity clients [22] for Ethereum blockchain can be run in a light mode called “WarpSync” mode [23].

The advantage of having multi modes is very clear. First, it partially addresses the very urgent issue of “blockchain
bloat”: when more transactions are made, the blockchain has more data to record, and if it grows too large, it becomes
di�cult to download or store; as a result, the scope of Bitcoin blockchain is very limited. Compressing the transaction
history in a light mode will directly reduce the e�ort of storing blockchain transactions. Second, having multiple modes
will allow more players especially those with limited storage to join the system. This apparently will make multi-mode
Bitcoin like cryptocurrencies more popular.
Understanding the security of cryptocurrency systems. Rigorous security analysis of Bitcoin protocols has been recently
developed. Garay et al. [7] proposed the �rst cryptographic framework and investigated the security of a simpli�ed
version of Bitcoin. More concretely, Garay et al investigated a single mode version of Bitcoin protocol where all nodes

1Please see Section 8 of the whitepaper [14] for details.



are in the full-mode2, and they showed that several important security properties can be achieved under the assumption
that the majority of the full-mode nodes are honest. This result has been further extended; see [17, 8]. However, the
security of Bitcoin, as a multi-mode system, has not been investigated, to the best of our knowledge. This motivates
the following question:

What security properties can the current multi-mode Bitcoin system achieve?

1.1 Our contributions

Technical challenges. To answer the above question, we �rst need to understand the technical di�culty that we are
facing. First, we need a stateful model supporting di�erent roles; each player is expected to maintain a local memory
for storing the complete or partial history of transactions. Secondly, we need to de�ne security properties for the
light modes. In the previous e�orts [7, 17], all transactions are faithfully recorded, and certain security properties (e.g,
persistence and liveness) can be naturally de�ned. Now in a light mode, lots of information of the transactions will be
eliminated. Unlikely, the previous security de�nitions will work in all light modes. Finally, we need to de�ne security
for multiple modes. It is very possible that, nodes in di�erent modes may not be able to work together. If that is the
case, the entire system may be insecure.
Our approach. We consider a stateful model where each player maintains his local memory to store and update his
version of the transaction history. We consider di�erent types of players including full-mode players who store
the complete history, and light-mode players who store a compressed version of the history. To address the second
challenge, we introduce snapshot by generalizing the notion of ledger properly. Based on the notion of snapshot, we
de�ne the relaxed version of persistence and liveness. Finally, to address the third challenge, we de�ne the soundness
property to ensure the nodes in di�erent modes are compatible. Intuitively, for each new transaction, nodes in the full
mode and nodes in the light modes should return the same answer: all of these nodes may accept the new transaction,
or reject the transaction.
Applications. As an immediate application of our analysis framework, we for the �rst time, provide security analysis
for the two-mode version of Bitcoin (and also Ethereum) which consists of full-mode nodes and prune-mode nodes.
See the pruning proposals from Bitcoin/Ethereum community; there, network nodes are allowed to be in the prune-
mode: instead of storing the complete history of transactions, each prune-mode node keeps a succinct archive for the
transaction history. These proposals have been widely adopted in cryptocurrency community. However, their security
has not been investigated yet. We show that, under assumption that each honest player in prune-mode faithfully keeps
its succinct archive, then the Bitcoin/Ethereum pruning proposals can achieve the relaxed security properties. Note that
the relaxed security properties are su�cient for typical blockchain applications such as cryptocurrency. More details
can be found in Sections 5,6, and 7.
Related work: Due to space limitation, the related work can be found in Appendix A.1.
Organization: We introduce the model in Section 2. Then we introduce the proof of work blockchain in Section 3; due
to space limitation, additional materials can be found in Appendix B.

Our major contributions can be found in Section 4 for generalized ledger and the security de�nitions, and in Sec-
tion 5, 6, and 7, for the analysis of full mode, prune mode, and multi-mode, respectively. Additional materials for those
sections can also be found in appendix.

2 Model

In order to study the security of Bitcoin-like protocols, Garay et al. [7] (then Pass et al [17]) proposed a cryptographic
framework and showed that the (simpli�ed) Bitcoin can achieve several important security properties. Based on the
previous modeling e�orts [7, 17], we consider the framework with stateful miners, in the sense that they are required to
store blockchain information locally; in this way, only blocks, not the entire blockchains, appear in the broadcast chan-
nels. We also consider di�erent roles among the players: some players will record the complete history of transactions,
and some may record a compressed version of the history. Our modeling choice is consistent with the reality.32We remark that, Garay et al actually investigated an even further simpli�ed version of Bitcoin, called Bitcoin Backbone, where transactions are
straightforwardly recorded in each block of blockchain. In the real world Bitcoin blockchain, the transactions are organized via authenticated data
structure. Please see Section 5 for details.

3We note that, in [7], only a stateless model is considered; there, each player is note expected to maintain a local memory for storing the complete
or partial history of transactions. Instead, players are allowed to obtain the entire blockchain from the network. This modeling choice is su�cient
for the security analysis of a single mode Bitcoin blockchain where all players are in full-mode. However, the modeling does not re�ect the reality
and it is not su�cient for analyzing blockchain protocols with light mode players. Pass et al [17] considered a stateful model, for the single mode
Bitcoin system. The model here is very close to that in [17], but for multi-mode blockchain systems.
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2.1 The model of protocol execution

Network communication. We consider a standard multi-player communication setting with the relaxation that (i) all
nodes are connected via single- or multi-hop communication channels; (ii) these communication channels are reliable
but not authenticated, and the adversary may “spoof” the source of a message in a communication channel and imper-
sonate the (honest) sender of the message; and (iii) the messages between honest players can be delayed by at most
∆ number of execution rounds for some ∆ ∈ R+, and the adversary is not allowed to stop the messages from being
delivered.

We use Broadcast to denote the atomic unauthenticated broadcast channels in this asynchronous networks with
∆-bounded delay; here an adversarial sender may abuse Broadcast by sending inconsistent messages to di�erent
honest miners to confuse them. The adversary is “rushing” in the sense that in any given round the adversary is
allowed to see all honest miners’ messages before deciding his strategy.
The execution of proof-of-work blockchain protocol. We consider the execution of a multi-party protocol Π among a set
P of miners that is directed by an environment Z(1κ), where κ is a security parameter. Each player will have the
following phases.
Creation phase. All miners are created by the environment Z . Once created, the miner P ∈ P becomes active, with
initial state which consists of the genesis block, and mode information. Here the mode information speci�es which role
the miner P will play in the multi-party protocol.
Preparation phase. Any active miner P , before participating in the mining process, will obtain additional information
from the system based on its initial state. More concretely, if the miner P is in the full mode, then P will obtain the
entire blockchain information from the system, and store the blockchain information in its full-mode storage. If P is
in a light mode, then it will obtain a compressed version of the blockchain information, and then store the compressed
blockchain in its light mode storage.
Execution phase. Any active miner P , after the preparation phase can properly join the mining process. The mining
process consists of multiple rounds. In each round, the environment Z provides inputs for all miners and receives
outputs from these miners, and the miners communicate with each other. More concretely, in each round, each honest
miner receives an input from the environment Z , and potentially receives incoming network messages (delivered by
the adversary A), and then updates its local storage; then based on the stored information, it carries out some mining
operations; in the case that a new block is generated, the miner sends out the new block via Broadcast which will be
guaranteed to be delivered to all miners in the beginning of the next round. Note that, at any point of the execution,
the environment Z can communicate with the adversary A or access the local information of the miners.
Deletion phase. Active miners can be deleted from the system. In this case, the miners will be set inactive. These
inactive miners are not allowed to receive any input from, or return any output to the environment, and they are not
allowed to send out messages to Broadcast.

For simplicity, we consider the static computing power setting (where the total amount of computing power invested
to the protocol will not change over time). We further assume all miners have the same amount of computing power,
and there are n number of active miners. Moreover, we assume players remain in the same mode during the execution
(i.e., no mode changing). Note that, in each execution round, all miners have access to a random oracle hash(·).

We consider adaptive adversaries who are allowed to take control of protocol players on the �y. At any point of the
execution, Z can send message (Corrupt, P ) to adversary A. From that point, A has access to the party’s local state
and controls P .

Let {ViewP
Π,A,Z(κ, z)}κ∈N,z∈{0,1}∗ denote the random variable ensemble describing the view of a miner P after the

completion of an execution with environment Z , running protocol Π, and adversary A, on auxiliary input z ∈ {0, 1}∗
and security parameter κ. For simplicity, the parameters κ and z are often dropped if the context is clear, and we
describe the ensemble by ViewP

Π,A,Z(κ, z). The concatenation of the view of all miners 〈ViewP
Π,A,Z〉P∈P is denoted

by ViewΠ,A,Z .

3 Proof-of-work blockchain

In this section we provide de�nitions for a proof-of-work blockchain. The de�nitions are similar to previous works
[7, 17]. Developing their approach, we put details into block and blockchain de�nitions which allow us to build di�erent
modes of operation for a protocol participant.
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3.1 A block and a blockchain

To capture the real-world Bitcoin system, we de�ne a block as Bj = 〈headj , xj〉, where headj is a header of the block,
and xj is a block payload. The header is de�ned as headj = 〈hj , τj ,wj〉, where hj = hash(hj−1) is a link to a previous
block, τj denotes the one-way digest of xj (in the Bitcoin protocol it is generated by an authenticated data structure
πau, see De�nition C.1 further), and wj is a proof-of-work puzzle solution. The header should satisfy the inequality
hash(headj) < t, where t is the proof-of-work target setting hardness of a proof-of-work puzzle solution.

A blockchain is a sequence of ordered blocks, B∅,B1,B2, . . . ,B`, which are probably linked, so for any block Bj ,
its header contains correct link hj = hash(hj−1), with the exception of h1 = 0. We denote the blockchain as C =
B∅||B1||B2|| . . . ||B`, where operation “||” indicates the concatenation between any two blocks.
Blockchain payload and payload validation predicate. A blockchain payload is concatenation of blockchain block pay-
loads. In details, for blockchain C, blockchain payload is xC = 〈x1, . . . , x`〉. The validation of the blockchain payload
depends on the concrete applications on top of the blockchain protocol. In our blockchain protocol, participants are
validating the puzzle solutions via checking the hash inequality, the links between blocks via the hash chain, and the
payloads via a deterministic predicate V(·). Next, we will de�ne the predicate V(·).

De�nition 3.1 (Payload validation predicate). Consider a blockchain C of length ` ∈ N, with payload xC = 〈x1, . . . , x`〉.
We say deterministic V(·) is a payload validation predicate for blockchain C, if all the following conditions hold (1)
V(ε) = 1, (2) if V(xC) = 1, then there exists a new payload x such that V(xC , x ) = 1,

The �rst constraint says that blockchain development must be started in a correct initial state. The second constraint
means that making progress in constructing a blockchain is always possible. With these constrains applied, a blockchain
protocol can achieve its properties (namely Chain Growth, Common Pre�x and Chain Quality). In this section, we
leave predicate V(·) undetermined. In next sections, we will instantiate predicate V(·) when we consider a concrete
blockchain application.

3.2 Stable and unstable blockchain payload.

We term the sequence of all payloads except the last κ payloads (the con�rmed portion) as the stable blockchain payload,
and the sequence of the last κ payloads (the uncon�rmed portion) as the unstable blockchain payload. We formally de�ne
these terms as follows.

De�nition 3.2 (Stable and unstable blockchain payload). Let B1, . . . ,B` be the ordered sequence of blocks in a given
round, for ` ∈ N, where Bj = 〈headj , xj〉, for j ∈ [`]. Let κ be the security parameter. We then say 〈x1, x2, . . . , x`−κ〉 is a
stable blockchain payload and 〈x`−κ+1, x`−κ+2, . . . , x`〉 is an unstable blockchain payload.

We recall that a blockchain C is constituted by processing a sequence of blocks, B1,B2, . . . ,B`. However, di�erent
from the simpli�ed proof-of-work based blockchain that we present in the previous subsection (where the blockchain
is viewed as the concatenation of blocks), we structure the blockchain in a di�erent but equivalent way. In more
detail, we decompose the blockchain C of length ` into three components: (1) the header-chain (denoted H`), (2) the
stable blockchain payload (denoted x̄C), and (3) the unstable blockchain payload (denoted x̃C); here, the header-chain
H` := 〈head1, . . . , head`〉, the stable blockchain payload x̄C := 〈x1, x2, . . . , x`−κ〉, and the unstable blockchain payload
x̃C := 〈x`−κ+1, x`−κ+2, . . . , x`〉. That is, we can write a blockchain C of length ` as C := 〈H`, x̄C, x̃C〉. Note that, for
the sake of presentation, we use the notation C[j,m] to indicateH`[j,m], for j ≥ 1 and m ≤ `, in the next section. We
also abuse C � C′ (where C′ := 〈H′`, x̄ ′C, x̃ ′C〉) to sayH` � H′`.
Extending the stable and unstable blockchain payload. We then investigate how to extend the unstable blockchain pay-
load. As de�ned, the unstable blockchain payload of a blockchain C of length ` is formed and updated via a sequence
of the last κ payloads, i.e., x̃C := 〈x`−κ+1, x`−κ+2, . . . , x`〉. In addition, the number of payloads to form the unstable
blockchain payload sequence is de�ned by the security parameter κ. Therefore, whenever a new block B`+1 with a
new payload x`+1 is introduced in the system, the oldest payload in the unstable blockchain payload no longer belongs
to the last κ payloads. This payload will therefore be appended to the stable blockchain payload. In the meantime, the
new coming payload x`+1 is appended to the unstable blockchain payload.

This intuition is captured by the operationN, which is formally de�ned in Algorithm 1. Speci�cally, for the sequence
x̃C := 〈x`−κ+1, x`−κ+2, . . . , x`〉, the operation appends the new payload x`+1, and then removes the payload x`−κ+1

from the sequence to produce an updated sequence x̃ ′C := 〈x`−κ+2, . . . , x`, x`+1〉, and then returns a payload x`−κ+1.
Please refer to Algorithm 1.
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Algorithm 1 Operation N.
1: function N ( x̃C, x`+1 )
2: 〈x`−κ+1, x`−κ+2, . . . , x`〉 ← x̃C
3: x̃ ′C := 〈x`−κ+2, . . . , x`, x`+1〉 . concatenate x`+1 and remove x`−κ+1

4: return 〈x̃ ′C, x`−κ+1〉
5: end function

Stable blockchain payloadRecall that we treat the blockchainC as a set of a header-chain, a stable blockchain payload,
and an unstable blockchain payload, i.e., C = 〈H`, x̄C, x̃C〉. As the next step, we allow miners to compress the stable
blockchain payload of the blockchain C (of length `) to a succinct version, called compressed stable blockchain payload
and denoted x̄C. Now, the blockchain C consists of (1) a header-chain, (2) a compressed stable blockchain payload, and
(3) an unstable blockchain payload , i.e., C := 〈H`, x̄C, x̃C〉.

In more detail, the stable blockchain payload x̄C := 〈x1, x2, . . . , x`−κ〉 is compressed to x̄C via an operation “�”.
We write, x̄C := x1�x2� . . .�x`−κ. We stress that, this operation is instantiated later depending on the application
on top of the blockchain. For example, if miners want to keep all payloads of the blockchain, the operation � can be
instantiated as a concatenation operation, i.e., “||”. On the other hand, if miners want to only store useful information,
it can be instantiated as the operation ◦ (see Section D.1). For the sake of presentation, we defer the details of these
operations to next sections. Note that, the compressed stable blockchain payload x̄C is initially de�ned by x̄∅; here, x̄∅
could be set as empty, or it may contain some initial information depending on the applications.

Here, the compressed stable blockchain payload is validated via a compressed payload validation predicate. Formally,
the compressed payload validation predicate is de�ned as follows.

De�nition 3.3 (Compressed payload validation predicate). Consider a chain C := 〈H`, x̄C, x̃C〉 of length ` ∈ N, with
an operation “�". Let x̄∅ be the initial compressed stable blockchain payload. We say deterministic V(·) is a compressed
payload validation predicate, if the following conditions hold (1) V(x̄∅) = 1, (2) if V(x̄C) = 1, then there exists a new
payload x such that V(x̄C�x ) = 1

3.3 Security properties for the blockchain

In [7] (and then [17, 10], several important security properties, common pre�x property [7, 17], chain quality property
[7], and chain growth property [10], have been de�ned for (simpli�ed) Bitcoin blockchain protocols.

De�nition 3.4 (Chain growth). Consider a blockchain protocol ΠC among a set P of players. The chain growth property
Qcg with parameter g ∈ R states that for any honest player P ∈ P with the local chain C of length ` in round r and C′ of
length `′ in round r′, where r′ − r > 0, in ViewΠC,A,Z . It holds that `

′ − ` ≥ g · (r′ − r) for g > 0.

De�nition 3.5 (Chain quality). Consider a blockchain protocol ΠC among a set P of players. The chain quality property
Qcq with parameters µ ∈ R and T ∈ N states that for any honest player P ∈ P with a local chain C of length ` in
ViewΠC,A,Z , it holds that for large enough T consecutive blocks of C the ratio of honest headers is at least µ.

De�nition 3.6 (Common pre�x). Consider a blockchain protocol ΠC among a set P of players. The common pre�x
property Qcp with parameter κ ∈ N states that for any two honest players, P ′ with a best local chain C′ of length `′ in
round r′, and P ′′ with a best local chain C′′ of length `′′ in round r′′, in ViewΠC,A,Z where P ′, P ′′ ∈ P , r′ ≤ r′′, it holds
that C′[1, l ] � C′′ where l = `′ − κ.

Jumping ahead, the three properties can also be de�ned for the header-chain.

4 Ledger and its generalization

4.1 Preliminary: Ledger

Transactions. Generalizing a transaction structure of the Bitcoin and its descendants, we assume that a transaction
tx is associated with (1) transaction inputs, where a transaction input is denoted by Inp, and (2) also new transaction
outputs to create, where a transaction output is denoted by Outp. Here, an input or output is considered as a bitstring,
i.e., Inp ∈ {0, 1}∗, Outp ∈ {0, 1}∗, and tx := (〈Inp1, . . . , Inpj〉, 〈Outp1, . . . ,Outpk〉), for j, k ∈ N. Informally, a
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transaction tx is valid if it spends outputs created by previous transactions (or exist before the �rst transaction) and
not spent yet by other transactions, and also some application-speci�c checks are to be applied (such as signature or
amount validation).
Ledger. Since we are interested in transactions as the content of the ledger, the payload x is instantiated as a set of
transactions, x := 〈tx1, tx2, . . . , txe〉 for some e ∈ N. We write tx ∈ x to denote a transaction tx that is in the
transaction set x . If we particularly consider a transaction set in the i-th block, we write xi.

The input inserted at each block of the chain C is a set of transactions, i.e., x := 〈tx1, tx2, . . . , txe〉. We then term
the stable blockchain payload (in this case, the stable blockchain transaction) of the chain as ledger. Let κ denote the
security parameter. We formally present the de�nition of a ledger as follows.

De�nition 4.1 (Ledger). Let κ be the security parameter. Consider a chain C of the length ` ∈ N which contains a
blockchain payload xC := 〈x1, . . . , x`〉We say L` is the ledger (of length `) of C, if L` = 〈x1, . . . , x`−κ〉.

Informally, we have a ledger of length ` ∈ N consists of all transactions except the last κ transaction sets, i.e.,
xC := 〈x1, . . . , x`−κ〉, where xi is the input of the i-th block in C and xi := 〈tx1, tx2, . . . , txe〉. In addition, it should
hold that V(L`) = 1, where V(·) is a payload validation predicate (De�nition 3.1).

Remark 4.2. Here we follow the work by Pass et al. [17], and de�ne the stable blockchain payload as the ledger. That is,
in a ledger, the last κ number of transaction sets of the blockchain will be simply truncated.

4.2 Generalizing ledger: Snapshot

We here relax the de�nition of ledger so that more e�cient realizations can be allowed. Note that, for many important
applications such as cryptocurrency, a properly relaxed version of ledger may be su�cient.
Snapshot. Now, we still consider input inserted at each generalized block of the generalized chain C is a sequence
of transactions; that is, x := 〈tx1, tx2, . . . , txe〉. However, from the generalized chain C of the length `, we obtain
a generalized ledger, called snapshot and denoted SS`. Informally, the snapshot is constituted by applying a general
operation � to the stable blockchain payload (in this case, stable blockchain transaction— the sequence of transaction
sets truncating the last κ transaction sets), i.e., SS` = x1� . . .�x`−κ, where xi := 〈tx1, tx2, . . . , txe〉 is the input. In
other words, the snapshot SS` is the compressed stable blockchain payload. Moreover, it should hold that V(SS`) = 1,
where V(·) is a compressed payload validation predicate (De�nition 3.3). We formally de�ne a snapshot as follows.

De�nition 4.3 (Snapshot). Let κ be the security parameter. Consider a generalized chain C := 〈H`, x̄C, x̃C〉 of length
` ∈ N, with an operation “�" , where x̄C := x1�x2� . . .�x`−κ. We say SS` is the snapshot (of length `) of C, if SS` = x̄C.

Generalized operation rules. The snapshot SS` of C is constituted by a sequence of transaction sets via the operation“�".
We call the operation along with the compressed payload validation predicate V(·), an operation rule, denoted (�,V(·)).
More formally, we de�ne an operation rule as follows.

De�nition 4.4 (Generalized operation rule). Let B1, . . . ,B` be the ordered sequence of blocks. Consider a generalized
blockchain C of the length ` ∈ N, with the corresponding snapshot SS` and the operation �. Let V(·) be a compressed
payload validation predicate. Let κ be the security parameter. We say (�,V(·)) is a generalized operation rule if for any
generalized chain C, it holds that (1) SS` = x1 � . . . � x`−κ where xi is the payload of block Bi, and (2) V(SS`) = 1.

Security properties for snapshot. There are two important security properties, snapshot persistence and snapshot liveness,
in the single-mode generalized ledger protocol. Here we investigate how to de�ne the relaxed security properties for
the generalized ledger protocol when nodes are running in the snapshot mode.
Snapshot-persistence. Intuitively, the snapshot-persistence property implies, during a time period, the recorded
information (i.e., the compressed version of transactions) on two di�erent ledgers (two players) of any pair of honest
parties should be consistent with each other. Formally, we state the de�nition as follows.

De�nition 4.5 (Snapshot persistence). Consider a generalized ledger protocol ΠL with the operation rule (�,V(·)). Let
κ be the security parameter. Let ∆ denote the upper bound on network latency. Let SS`1 be the resulting snapshot at round
r1 of the length `1 reported by player P1, where `1 > κ.

Here snapshot persistence property states that, for any player P2, there exists a round r2 where r2 ≥ r1 + ∆ such that
if the reported snapshot SS`2 (by player P2) of the length `2 satis�es `2 = `1, then SS`2 = SS`1 .
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Snapshot-liveness. Intuitively, the liveness guarantees that any new transactions, that do not con�ict with the
recorded information, will be de�nitely recorded on the ledger after a certain number of rounds. Similarly, snap-
shot liveness guarantees that the new transactions, if they do not con�ict with the snapshot, will be accepted and
incorporated into the updated snapshot, after a certain number of rounds.

De�nition 4.6 (Snapshot liveness). Consider a generalized ledger protocol ΠL with the operation rule (�,V(·)). Let κ be
the security parameter. Consider a “wait time” parameter t .

Here snapshot liveness property states that, if a valid transaction tx is given as input to every honest player P contin-
uously for t rounds from a given round r, then there exist snapshots SS`, SS`−1 and a transaction set x (reported by P ) of
the length ` > κ, in round r′ ≤ r + t , such that SS` := SS`−1�x and tx ∈ x .

4.3 From single mode to multi-mode

In a multi-mode protocol, denoted Πmulti, there exist multiple types of modes. These modes should be compatible
with each other so that the system can run stably and securely. Moreover, each mode is associated with an operation
rule. Here, each operation rule is de�ned by an operation and a multi-mode snapshot validation predicate. Consider a
mode i where i ∈ [m], the operation rule in this mode is de�ned as (�i,Vi), where Vi denotes a multi-mode snapshot
validation predicate and �i denotes the general operation in mode i.

Similar to the compressed payload validation predicate in Section 3, we require constraints on the multi-mode snap-
shot validation predicate. In addition to the constrains for the compressed payload validation predicate, a multi-mode
snapshot validation predicate in the multi-mode system should hold that, di�erent snapshots generated from the same
stable blockchain payload (transaction) should be rejected/accepted in the same way, and also always able to make
progress. We formally de�ne a multi-mode snapshot validation predicate as follows.

De�nition 4.7 (Multi-mode snapshot validation predicate). Consider a multi-mode ledger protocol Πmulti withmmodes
M1, M2, . . . , Mm. For each mode Mi with operation rule (�i,Vi(·)), the corresponding initial snapshot is SSMi∅ . Consider a gen-
eralized blockchain C of length `, with the corresponding snapshot SSMi` , in mode i-th, where i ∈ [m]. We say (V1, . . . ,Vm)
are a set of multi-mode snapshot validation predicates, if the following conditions hold for the same generalized blockchain
C

• for any mode Mi, where i ∈ [m], it holds that Vi(SSMi∅ ) = 1.

• for any mode Mi, where i ∈ [m], it holds that, if Vi(SSMi` ) = 1, then there exists a new payload x such that
Vi(SSMi` �ix ) = 1,

• for any pair of modes Mi and Mj , where i, j ∈ [m], it holds that Vi(SS
Mi
` ) = Vj(SS

Mj
` ).

We illustrate the multi-mode design in Figure 1: the multi-mode system is composed bymmodes where each mode-
i, for 1 ≤ i ≤ m, is an instantiation of the generalized ledger with the operation rule (�i,Vi(·)); concretely, for each
mode, we need to instantiate the content of the state of snapshot, the content of the snapshot, along with its operation
rule (�i,Vi(·)).

Multi-mode system

Mode M1

SSM1`

(�1,V1)

Mode M2

SSM2`

(�2,V2)

· · · Mode Mm

SSMm`

(�m,Vm)

Figure 1: Multi-mode cryptocurrency system.

De�ning security for incorporating multiple modes. There are multiple types of nodes, running in di�erent modes, in our
multi-mode protocol. Intuitively, these nodes should be compatible. We formalize this intuition via a security property,
multi-mode system soundness. More concretely, we need to provide the security guarantee that new transactions should
be accepted/rejected in the same way by all nodes in di�erent modes. That means, when applying the operation rule
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to the i-th mode nodes and to the j-th mode nodes, where i, j ∈ [m], the output should be the same. This property can
be trivially achieved if there is only a single mode. However, this property is critical for designing multi-mode cryp-
tocurrencies that has more than one mode (e.g., Prune system in the next section). Without this security requirement,
trivial protocols could be allowed.

De�nition 4.8 (Multi-mode soundness). Consider a multi-mode ledger protocol Πmulti. Let m be the total number of
modes in Πmulti. Consider any pair of a mode i-th with the multi-mode operation rule (�i,Vi(·)) and a mode j-th with
the multi-mode operation rule (�j ,Vj(·)) in Πmulti, where j, i ∈ [m]. Let κ be the security parameter. Let ∆ denote the
upper bound on network latency. Let SSMi`1 be the snapshot of player P1 in the mode i-th of the length `1 > κ at round r1.

Here multi-mode soundness property states that, for any player P2 in the mode j-th with resulting snapshot SSMj`2 at
round r2 ≥ r1 + ∆ of the length `2, if `1 = `2 = `, then Vi(SSMi` �i x ) = Vj(SS

Mj
` �j x ), for any input x .

5 Fullmode

5.1 Instantiating snapshot to full mode

We use Πfull to denote the ledger protocol in the full mode. In Πfull, players are expected to store full sequence of
historical transaction sets. Please refer to Table 1 for how we instantiate to the full mode, and please also refer to Figure
2 for an illustration of Table 1.

Table 1: Snapshot Instantiation: full mode Πfull

SS` T` where T` is a full sequence of transactions (truncating the last κ transaction sets), i.e., T` := 〈x1, x2, . . . , x`−κ〉.
� ||
V(·) Vfull operates in the following way: return true if the argument is ε. If the input is (T`):

Parse T` = 〈x1, x2, . . . , x`−κ〉,
Vfull outputs true if and only if the vector 〈x1, . . . , x`−κ〉 is a valid sequence of transaction sets, i.e., for every
transaction of the sequence txi := (〈Inp1, . . . , Inpj〉, 〈Outp1, . . . ,Outpk〉), for j, k ∈ N, each input Inp spends an
output created but not spent before txi, and txi is correct from an application’s point of view.

Since we are interested in transactions as the content of the ledger, we instantiate the payload x in a block as a set
of transactions, and write x := 〈tx1, tx2, . . . , txe〉. We use xi to denote the payload of the i-th block. We then have a
full sequence of transaction sets of the length ` except the last κ transaction sets T` := 〈x1, x2, . . . , x`−κ〉. Intuitively,
if there is a new transaction set (returned by operation N, see Algorithm 1), then the sequence of transaction sets
is concatenated by one more transaction set such that the new transaction sequence is valid with respect to a multi-
mode snapshot validation predicate. Note that, we need instantiate the predicate V(·) to Vfull(·) in this full mode. In
more detail, from Table 1, for any transaction set x (returned by operation N), it should follow that SS`+1 := SS`�x
and Vfull(SS`+1), where � := ||. This implies, T`+1 := T`||x = 〈x1, x2, . . . , x`−κ, x 〉; here, the updated transaction
sequence is valid with respect to data validation predicate Vfull(·), i.e., Vfull(T`+1) = 1 (see Table 1). In a nutshell, the
predicate Vfull(·) checks (1) the con�ict between any pair of transactions, and (2) the integrity of every transaction
from its input. Details are provided in Table 1.

Remark 5.1. We emphasize that, in order to simplify the presentation, we consider that the snapshot is formed by the
transactions (without considering the digests). Furthermore, we only focus on the con�ict between transactions, and assume
that the digests are generated correctly.

5.2 Security analysis for full-mode

We begin by showing that the execution in full-mode satis�es the snapshot persistence, with an overwhelming probabil-
ity in κ (see Section 4.3, De�nition 4.5). The proof is essentially based on the common-pre�x property of the underlying
header-chain and the collision-resistance of the authenticated data structure used in this mode.

Theorem 5.2 (full-mode persistence). Consider the generalized ledger protocol Πfull (see Section 5.1). Let κ be the security
parameter. Assume the authenticated data structure Σau (see De�nition C.1) is collision-resistant. Assume that γ = λβ
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Time

header-chainH`

transaction sequence
T` := 〈x1, . . . , x`−κ〉

head`−κ−3 head`−κ−2 head`−κ−1 head`−κ . . . head`

x`−κ−3

B`−κ−3

x`−κ−2

B`−κ−2

x`−κ−1

B`−κ−1

x`−κ

B`−κ

. . . x`

B`

. . .

. . .

Figure 2: Structure of the generalized blockchain and ledger in full mode.

and λ > 1. Then, it holds that the execution in full-mode Πfull satis�es the snapshot persistence property, with probability
at least 1− ε(κ), where ε(·) is a negligible function.

Proof can be found in Appendix C.2.
Note that snapshot persistence property (see Section 4.3, De�nition 4.6) in full-mode is useful but not enough to

ensure that the players in full-mode makes progress, i.e., that transactions are eventually accepted (or recorded). This
is captured by the snapshot liveness property in full-mode. The snapshot liveness property in full-mode is formally
stated in Theorem 5.3. Proof can be found in Appendix C.3.

Theorem 5.3 (full-mode liveness). Consider the generalized ledger protocol Πfull (see Section 5.1). Let κ be the security
parameter. Assume the authenticated data structure Σau (see De�nition C.1) is collision-resistant. Assume that γ = λβ and
λ > 1. Then, it holds that the execution in full-mode Πfull satis�es the snapshot liveness property where t = (1 + δ) 2κ

γ , for
δ > 0, with probability at least 1− ε(κ) where ε(·) is a negligible function.

6 Prunemode

6.1 Instantiating snapshot to prune mode

This design goal is captured by the following instantiation of the snapshot to prune mode Πprune (see Table 2). Let ` ∈ N
denote the current blockchain length. In Πprune, players are expected to store the {`-κ}-th UTXO-set. In Table 2, we
instantiate the snapshot SS` of any player P . (We write SSj` , if we are interested in the snapshot of a particular player
Pj , where 1 ≤ j ≤ n.)

U`−κ
UTXO-set

last κ transaction sets

Time

header-chainH`head`−κ−1 head`−κ head`−κ+1 · · · head`

x`−κ+1

B`−κ+1

· · ·

· · ·

x`

B`

. . .

Figure 3: The illustration of the generalized blockchain and the ledger in prune mode. Here, the snapshot SS` consists
of the (`− κ)-th UTXO-set U`−κ.

Let U0 denote the initial UTXO-set such that Vprune(U0) = 1. For ` < κ, we set U`−κ := U0. From Table 2,
for any new transaction set x (returned by operation N, see Algorithm 1), it should follow that SS`+1 := SS`�x and
Vfull(SS`+1), where � := ◦. This implies, U`−κ+1 := U`−κ◦x .
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Table 2: Snapshot instantiation: prune mode Πprune

SS` U`−κ where U`−κ is the (`-κ)-th UTXO-set.
� ◦
V Vprune operates in the following way: return true if the argument is ε. If the input is (U`−κ):

Vprune returns true if U`−κ can be parsed as a sequence of transaction outputs 〈Outp1, . . . ,Outpk〉, for k ∈ N that
is correct from an application’s point of view (for example, for a cryptocurrency sum of output values must equal
to number of tokens issued to the moment).

Our instantiation of SS` in the prune mode follows certain rules which could be speci�ed by a multi-mode snapshot
validation predicate Vprune. This predicate is used to validate a snapshot. If it receives as input U`−κ, the predicate
returns True if and only if U`−κ is a valid UTXO-set to the application’s point of view.

6.2 Security analysis for prune-mode

Similar to the proofs for the snapshot persistence and snapshot liveness in full-mode Πfull, the proofs for the snapshot
persistence and snapshot liveness properties in prune-mode Πprune (see Section 4.3, De�nitions 4.5 and 4.6), are essen-
tially based on the common-pre�x property, chain-quality property, and chain growth property for the header-chains
together with the collision-resistance of the authenticated data structure used in this mode.

We begin by introducing an important lemma to prove the security. Informally, the lemma states that if any pair
of players has the same UTXO-sets, then when the UTXO-sets are extended, they are identical. The lemma is formally
state as follows. (Proof can be found in Appendix D.2. )

Lemma 6.1. Consider the generalized ledger protocol Πprune (see Section 6.1). Let κ be the security parameter. Assume the
authenticated data structure Σau (see De�nition C.1) is collision-resistant. Assume that γ = λβ and λ > 1. Assume that
U1
`−κ = U2

`−κ, for any two honest players P1 and P2. It holds that U1
`−κ+1 = U2

`−κ+1 with probability at least 1 − ε(κ),
where ε(·) is a negligible function in κ.

We are now ready to prove the snapshot persistence considering the execution in prune mode as follows.

Theorem 6.2 (prune-mode persistence). Consider the generalized ledger protocol Πprune (see Section 6.1). Let κ be the
security parameter. Assume the authenticated data structure Σau (see De�nition C.1) is collision-resistant. Assume that
γ = λβ and λ > 1, it holds that the execution in prune-mode Πprune satis�es the snapshot persistence property, with
probability at least 1− ε(κ), where ε(·) is a negligible function.

Proof can be found in Appendix D.3.

7 Prune: A multi-mode system with full and prunemodes

There are two modes, full-mode Πfull (see Section 5), and prune-mode Πprune (see Section 6) in the Prune system, and
we write Πmulti = (Πfull,Πprune). Both modes are instantiations of the generalized ledger. We remark that our Prune
system can be viewed as an abstract presentation of the Bitcoin Pruned proposal (introduced in Bitcoin Core version
0.11 [1]). We also remark that, our Prune can be easily modi�ed to capture the Ethereum Pruned proposal [23].

7.1 Security analysis for incorporating full-mode and prune-mode

In this section, we prove the multi-mode system soundness (see Section 4.3, De�nition 4.8). Intuitively, the multi-mode
system soundness property says that any transaction should be accepted/rejected in the same way as by the prune-mode
players or by full-mode players. The proof is essentially based on the snapshot persistence property for prune-mode
and full-mode. Before going to the details of the proof of multi-mode system soundness, we state a lemma to show
that unspent transaction outputs are as useful as the full set of transactions. More precisely, new transactions should
be accepted/rejected in the same way with respect to the snapshot in full mode (generated from the full sequence of all
processed transactions truncating the last κ transaction sets), and to the snapshot in prune mode (containing the set of
unspent transaction outputs). This implies the multi-mode snapshot validation predicates in both prune and full mode
should return the same output.
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Note that, to distinguish the snapshots and the corresponding operations in full mode from prune mode, we denote
SSf` and �f as the snapshot of length ` and operation in full mode, respectively. Similarly, we denote SSp` and �p as the
snapshot and operation in prune mode, respectively. If we are interested in the snapshot of a particular player Pi, we
write SSf,i` (or SSp,i` ).

Lemma 7.1. Consider Prune system Πmulti = (Πprune,Πfull). Let κ be the security parameter. Consider a snapshot
SSf` := T` in fullmode where T` := 〈x1, x2, . . . , x`−κ〉, and SSp` = U`−κ in prunemode, where U`−κ := U0◦x1◦ . . . x`−κ.
It holds that for any transaction set x , Vfull(SS

f
`�f x ) = Vprune(SS

p
`�px ) where �f := || and �p := ◦.

Proof can be found in Appendix E.1.
Armed with Lemma 7.1 and Lemma 6.1 in Section 6.2, we are now ready to prove our main theorem as follows.

Theorem 7.2 (Multi-mode soundness). Consider Prune system Πmulti = (Πprune,Πfull) in Section 7. Let κ be the security
parameter. Let κ be the security parameter. Assume the authenticated data structure πau (see De�nition C.1) is collision-
resistant. Assume that γ = λβ and λ > 1, it holds that Prune system Πmulti satis�es the multi-mode soundness property
with probability at least 1− ε(κ), where ε(·) is a negligible function.

Proof can be found in Appendix E.2
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A Supporting material for Section 1

A.1 Related work

Cryptocurrency clientmodes. Multi-mode paradigm was introduced in the original Bitcoin whitepaper [14]: Nakamoto
describes how to implement a “full” mode node; in addition, he also introduces a light mode called “SPV (Simple Pay-
ment Veri�cation)” mode (please see Section 8 of the whitepaper for details). A full node is checking everything in the
blockchain: proofs of work, correctness of inter-block pointers, signatures and semantic rules for all the transactions,
forking rules etc. An SPV node works under an assumption that a chain with most work contributed is also a valid
chain. Thus an SPV client is not downloading and verifying transactions in blocks, but just checks validity of linking
structure of the blockchain and also proofs of work by using only compact block headers. SPV could be problematic
from security point of view, especially when miners are working in SPV mode; for example, miners may generate in-
valid blocks (see [3] for more details). A hybrid approach of secure thin client was proposed in [6]. A secure thin client
is doing adaptive veri�cation of blocks with regards to the level of targeted con�dence. That is, this kind of client is
checking part of transactions in arbitrarily-chosen su�x of the blockchain, and a user is choosing how much resources
to spend on this probabilistic validation (more resources to be spent means higher con�dence in the su�x contents).

Since version 0.11 of Bitcoin Core [1], a node can be run in another light mode called “pruning” mode. A node
in this mode is downloading and processing all the blocks, and then leaves only a �xed-sized su�x of the blockchain
assuming that some other nodes in the network store the pre�x. To relax this assumption (and also to support better SPV
clients), Ethereum [24] has representation of state needed for transaction validation being �xed by the protocol, with
an authenticating digest to be included into a block. Some implementations of the protocol then are using the digest
to obtain a veri�able state snapshot from peers without building it by processing blocks from genesis. WarpSync [16]
mode in Parity [22] is the example of this bootstrapping procedure. WarpSync could be seen as the development of
the pruning mode in Bitcoin, as a node running in this mode is not only storing a su�x of the blockchain, but also
processing only �xed number of last blocks after checking block headers and downloading authenticated validation
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state before the full blocks. The underlying assumption then is that there are network nodes storing authenticated
validation states buried deep enough in the history. The scheme lacks rigorous security analysis.

There are some informal proposals in the community, as well as the paper [18], which propose to avoid storing
validation state for non-mining full nodes, while miners are still storing this structure. In this proposal [18] miners are
including proofs of state transformations against a root digest of two-party-model dynamic authenticated dictionary
built on top of the state. It is possible for a full node then to check proofs and get a new digest value from an older one
and a set of transformations, with some genesis digest all the protocol participants are agree on.

Cryptocurrency and security analysis. The security of Bitcoin system has been analyzed in the rational setting,
e.g., [5, 4, 15, 9, 19, 20], and also in cryptographic setting [7, 17, 21, 10, 11]. Three important security properties, common
pre�x, chain growth, and chain quality, have been considered for secure blockchain protocols. The common pre�x and
chain quality properties were originally formalized by Garay et al. [7]. The chain growth property was �rst formally
de�ned by Kiayias et al. [10]. The common pre�x property was later strengthened by Pass et al. [17]. In our study, we
adopt the stronger variant of the common pre�x property by Pass et al. [17] together with the chain quality and chain
growth from [10, 7].

B Supporting material for Section 3

B.1 The execution of miners

The blockchain protocol ΠC . We are now ready to describe the blockchain protocol ΠC (Algorithm 2). This is the
protocol that is executed by the miners and which is assumed to run “inde�nitely".

First, each miner copies all the new blocks received from the network into his local state. Then the miner updates set
of stored blokchains C with the blocks and selects the best blockchain from the set by calling the BestChain function
(Algorithm 5). Every updated blockchain must be valid, thus BestChain is calling chain validation function Validate
(Algorithm 4) under the hood. Then the miner tries to extend the best blockchain by running randomized algorithm
Pow (Algorithm 3) which is issuing a single query to idealized hash function per round. The pseudocode of main miner
loop is provided in Algorithm 2.

Algorithm 2 The blockchain protocol ΠC .
1: C := ε
2: while True do

3: B← all blocks from the network.
4: 〈C,C〉 ← BestChain(C,B)
5: 〈x , τ〉 ← a new payload and its corresponding digest from the environment.
6: 〈H`, x̄C, x̃C〉 ← C . the length of C is `
7: 〈head1, head2, . . . , head`〉 ← H`
8: head`+1 ← Pow(head`, τ)
9: if head`+1 6= ε then

10: B := 〈head`+1, x 〉
11: H`+1 := 〈head1, head2, . . . , head`, head`+1〉
12: 〈x̃ ′C, x ′〉 := x̃CNx
13: x̄′C := x̄C�x ′
14: C′ := 〈H`+1, x̄

′
C, x̃
′
C〉

15: C := (C \ {C}) ∪ {C′}
16: Broadcast(B)
17: end if

18: round := round + 1
19: end while
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Algorithm 3 The proof of work function Pow , parametrized by t and hash function hash(·).
1: function Pow (head`, τ )
2: h← hash(head`)
3: w← {0, 1}κ
4: head`+1 := ε
5: if hash(h, τ,w) < t then

6: head`+1 := 〈h, τ,w〉
7: end if

8: return head`+1

9: end function

Algorithm 4 Validation function Validate , parameterized by a target t, a hash function hash(·), and compressed
payload validation predicate V(·).

1: function Validate( C )
2: 〈H`, x̄C, x̃C〉 ← C
3: b := V(x̄C)
4: if b then
5: 〈head1, head2, . . . , head`〉 ← H` . the length of C is `
6: h′ := 0
7: for each i in 1, . . . , ` do
8: parse headi into 〈hi, τi,wi〉
9: if (hi = h′) ∧ (hash(headi) < t) then

10: h′ ← hash(headi)
11: else

12: return (b = 0)
13: end if

14: end for

15: end if

16: return (b)
17: end function

Algorithm 5 Best chain function BestChain .
1: function BestChain(C,B)
2: for each B ∈ B (reordered by using hash-links) do

3: 〈head, x 〉 ← B . iterating over B to append new blocks
4: for each C in C do

5: 〈H`, x̄C, x̃C〉 ← C . the length of C is `
6: H`+1 := 〈H`, head〉
7: 〈x̃ ′C, x ′〉 := x̃CNx
8: x̄′C := x̄C�x ′
9: C′ := 〈H`+1, x̄

′
C, x̃
′
C〉

10: if C′ 6=⊥ ∧Validate(C′) then
11: C := (C \ {C}) ∪ {C′}
12: end if

13: end for

14: end for

15: return 〈C,C with a longest header-chain in C〉
16: end function
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B.2 Security analysis for the blockchain

The underlying header-chain in the blockchain is the same as the Bitcoin blockchain in [7] except that we specify each
payload xi as the digest τi of a transaction xi. Indeed, the security of our header-chain is implied from the security
of the blockchain in Bitcoin backbone; therefore, by the security of Bitcoin backbone shown in [7], the blockchain
protocol ΠC (Section B.1) achieves the three security properties: common-pre�x property, chain quality property, and
chain growth property.

We begin by recalling the following two quantities introduced in [7, 17]. Consider the total number of players is
n, the portion of malicious computing power is ρ, and p = t

2κ is the probability of success in a single PoW function
invocation.

Let α = 1− (1− p)(1−ρ)n be the probability that at least one honest players mines a block successfully in a round.
Let β = ρnp be the expected number of blocks that malicious players can �nd in a round.

Here, when pn� 1, we have α ≈ (1− ρ)np, and thus α
β ≈

1−ρ
ρ . We assume 0 < α� 1, 0 < β � 1 and α = λβ

where λ ∈ (1,∞).
We consider the network delay model as in [17]. We then have γ = α

1+∆α can be viewed as a “discounted” version
of α due to the fact that the messages sent by honest parties can be delayed in ∆ rounds; γ corresponds to the “e�ective”
honest computing resource. We also assume (α+ β)∆� 1.

Theorem B.1 (Chain growth). For any δ, γ > 0, consider the blockchain protocol ΠC (see Section B.1) among a set P of
players. For any honest player P ∈ P with the local chain C of length ` in round r and C′ of length `′ in round r′, where
r′ − r = s > 0, in ViewΠC,A,Z , the probability that `′ − ` ≥ g · s is at least 1− e−Ω(s) where g = (1− δ)γ.

Theorem B.2 (Chain quality). Assume that γ = λβ and λ > 1. For any δ > 0, consider the blockchain protocol ΠC (see
Section B.1) among a set P of players. For any honest player P ∈ P , with the local chain C of length ` in ViewΠC,A,Z , the
probability that, for large enough T consecutive blocks of C which are generated in s rounds, the ratio of honest blocks is
no less than µ = 1− (1 + δ)βγ is at least 1− e−Ω(T).

Theorem B.3 (Common pre�x). Assume that γ = λβ and λ > 1. For any δ > 0, consider the blockchain protocol ΠC
(see Section B.1) among a set P of players. For any two honest players, P ′ ∈ P with the local chain C′ of length `′ in round
r′, and P ′′ ∈ P in round r′′ with the local chain C′′ of length `′′, in ViewΠC,A,Z where r′ ≤ r′′, the probability that
C′[1, l ] � C′′ is at least 1− e−Ω(κ) where l = `′ − κ.

Indeed, the underlying blockchain in the blockchain protocol is the header-chain. Thus, the three theorems above
are essentially for the header-chain. In order words, the header-chains in the blockchain protocol ΠC satisfy the chain
growth, chain quality, and common-pre�x properties.
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C Supporting material for Section 5

C.1 Building block: Authenticated data structure

To authenticate a block via a compact header Bitcoin is using Merkle tree [12], which is simply a binary tree over inputs
x1, . . . , xj , such as the inputs are placed in the leaves of the tree (if j is not a power of two, we add null-elements up to
a closest power of two), and the value of each internal node then is the hash of values of its two children. It is easy to
see that the tree is of length log(j) and has a single authenticating digest at the top. A Merkle tree is collision-resistant.
By using a Merkle tree it is possible to prove membership of any element in a set by providing logarithmic in a size
of the set number of hashes. We are interested in collision-resistance only, and we de�ne a generalized notion of an
authenticated data structure over a transaction set.

De�nitionC.1. An authenticated data structureΣau is a pair of deterministic polynomial-time algorithms (Root,CheckRoot),
with security parameter κ, such that:

The digest generation algorithm Root takes a data structure x and outputs a digest τ ∈ {0, 1}κ. We write this as
τ := Root(x ).
The digest veri�cation algorithm CheckRoot takes a data structure x ∈ {0, 1}∗, and a digest τ ∈ {0, 1}κ. It outputs
a bit b, with b = 1 meaning valid and b = 0 meaning invalid. We write this as b := CheckRoot(x , τ).

We require the authenticated data structure Σau = (Root,CheckRoot) to be collision-resistant.

De�nition C.2. An authenticated data structure Σau = (Root,CheckRoot) is collision-resistant if for all ppt adversaires
A, it holds that

Pr[Auth-collA,Σau
(κ) = 1] ≤ negl(κ)

where Auth-collA,Σau
(κ) is an collision-�nding experiment de�ned as follows.

The adversary A is given input 1κ, and outputs x , x ′.
The output of the experiment is de�ned to be 1 if and only if x 6= x ′,Root(x ) = Root(x ′) = τ , andCheckRoot(x , τ) =
1 and CheckRoot(x ′, τ) = 1. In such a case we say that A has found a collision.

C.2 Proof of Theorem 5.2

Proof. By Theorem B.3, the generalized blockchain protocol (the underlying header-chain) satis�es the common-pre�x
property with the probability 1− e−Ω(κ). Now, suppose that the execution in full-mode Πfull (see Section 5.1) satis�es
the snapshot persistence property, with probability at most 1−ζ(κ) such that ζ(·) is a non-negligible function. We then
show that there exists a ppt adversaryA′ against Σau that can win the collision-�nding experiment (see De�nition C.2)
with probability at least ζ ′(κ), where ζ ′(·) is a non-negligible function.

Let Z denote the environment in which protocol execution is in the full-mode. We will construct A′ from the
execution of the full-mode Πfull that is directed by Z as follows. The adversary A′ is given 1κ. He then randomly
chooses pair of honest players P1 with the snapshot SS1

`1
:= T 1

`1
of length `1 and P2 with the snapshot SS2

`2
:= T 2

`2
of

length `2 = `1, where T 1
`1

:= 〈x 1
1 , . . . , x

1
`1
〉 and T 2

`2
:= 〈x 2

1 , . . . , x
2
`2
〉 (note that, it holds that `2 ≥ `1 when r2 ≥ ∆+r1).

Then choose random ` ∈ [`1], and output a pair (x 1
` , x

2
` ) to its challenger.

Note that, once τ` appears on the corresponding header-chainH1
`1

of any player P1 at round r1, then for any other
honest player P2 with the corresponding header-chainH2

`2
at round r2, by the common-pre�x property, τ` also appears

onH2
`2

.
Since the execution in full-mode Πfull (see Section 5), satis�es the snapshot persistence property, with probability

at most 1− ζ(κ), then there exists a pair (T i`i , T
j
`j

) of players (Pi, Pj) such that Pr[T i`i 6= T
j
`j

] > ζ .
Thus,

Pr[T 2
`2 6= T

1
`1 ] >

ζ

n2
and Pr[x 2

` 6= x 1
` ] >

ζ

n2q

where 1
n2 is the probability that P1 = Pi and P2 = Pj , and 1

q is the probability that ` is the length such that x 2
` 6= x 1

` ,
and q is a polynomial function. Note that, the transaction sets x 1

` and x 2
` have the same digest by the common-pre�x

property. Thus, the ppt adversary A′ against Σau can win the collision-resistant experiment (see De�nition C.2) with
non-negligible probability ζ ′ where ζ ′ = ζ

n2q .
By the common-pre�x property, we have H1

` , H2
` (truncating the last κ headers) are the same with probability at

least 1 − e−Ω(κ); it follows that τ1
` = τ2

` (where τ1
` := Root(x 1

` ) and τ2
` := Root(x 2

` )) with probability that is close
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to 1. Thus, there exists a pair (x 1
` , x

2
` ) such that x 1

` 6= x 2
` , Root(x 1

` ) = Root(x 2
` ) = τ1

` = τ2
` , CheckRoot(x 1

` , τ
1
` ) =

CheckRoot(x 2
` , τ

2
` ) = 1, with probability at least ζ ′ where ζ ′ = ζ

n2q . This completes the proof.

C.3 Proof of Theorem 5.3

Proof. By Theorems B.2 and B.1, the generalized blockchain protocol (the underlying header-chain) satis�es the chain
growth property and chain quality property with probability that is close to 1. Now, we need to prove that assuming
all honest players receive as input the transaction tx for at most t = (1 + δ) 2κ

γ rounds, for δ > 0, then for any player
P there exists snapshots SS` := T` of length `, SS`−1 := T`−1 of length `-1 and a transaction set x, in the full mode,
such that SS` := SS`−1�x and tx ∈ x , with probability at least 1− ε(κ), where ε(·) is a negligible function and � := ||.

Note that, by the chain-growth property (Theorem B.1), we have that the header-chain of any honest party has
increased by at least 2κ headers, respectively. By the chain-quality property (Theorem B.2), there exists a header with
the digest of a transaction set x that was computed by an honest party after t = (1 + δ) 2κ

γ rounds, and tx ∈ x , with
probability that is close to 1.

Now, suppose the execution in full-mode achieves the snapshot liveness, with probability at most 1− ζ(κ), where
ζ(·) is a non-negligible function, then we need to show that there exists a ppt adversary A′ against Σau that can win
the collision-resistant experiment (see De�nition C.2) with probability at least ζ ′(κ), where ζ ′(·) is a non-negligible
function. Let Z denote the environment in which protocol execution is in the full-mode.

We then construct the adversary A′ from the execution in the full-mode that is directed by Z as follows. The
adversaryA′ is given 1κ. Then, randomly choose a transaction set x that is input to the execution in a particular round
r, with the corresponding digest τ . The adversary then randomly chooses a player P ′. Let SS` := T` be the snapshot
of a player P ′ at round r′ ≤ r + t where τ appears on the corresponding header-chain of T`, and Let SS` := T`−1 be
the latest snapshot of a player P ′ of length `-1 before round r+ t . Let x ′ denote the corresponding transaction set such
that SS` := SS`−1�x ′, where � := ‖. The adversary then outputs (x , x ′).

Since if the execution in full-mode Πfull (see Section 5.1) satis�es the snapshot liveness property, with probability
at most 1− ζ(κ), then all transactions belong to a transaction set x such that x appears on T` of any honest player P ,
with probability at most 1 − ζ(κ). Thus, there exists a transaction set that is not on T ′` of an honest player P ′ with
probability at least ζ(κ), i.e., Pr[T` 6= T ′` ] > ζ

n . It follows that

Pr[x 6= x ′] >
ζ

nq

where 1
q is the probability that tx ∈ x is the transaction that breaks the property (function q is a polynomial

function) and 1
n is the probability that party P is P ′. This implies that there exists x ′ 6= x , with the same digest τ as x

that appears on T` of at least one player, with probability at least ζ
nq .

Thus, the ppt adversary A′ against Σau can win the collision-resistant experiment (see De�nition C.2) with prob-
ability at least ζ ′ = ζ

nq . By the chain growth property and chain quality property, the corresponding digest τ of x is
de�nitely on a header in the header-chain of each honest player after t = 1 + δ) 2κ

γ rounds, for δ > 0. Thus, another
transaction set x ′ 6= x , with the same digest such that Root(x ) = Root(x ′) = τ , CheckRoot(x ′, τ) = 1, replaces x ,
with probability at least ζ ′ = ζ

nq , where ζ is a non-negligible probability. Therefore, there exists a pair (x , x ′) such that
CheckRoot(x , τ) = CheckRoot(x ′, τ) = 1, with a non-negligible probability. This completes the proof.
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D Supporting material for Section 6

D.1 Building block: UTXO-set

In Bitcoin, each output of a particular transaction can only be spent once; the outputs of all transactions included in the
blockchain can be categorized as either unspent transaction outputs [2, 13] or spent transaction outputs4. For a payment
to be valid, it must use previously unspent outputs as inputs. Therefore, spent transaction outputs are not necessary
to be stored, and a set of unspent transaction outputs could be abstracted and represented as a UTXO-set, denoted U .
Now, instead of storing all historical and unnecessary transactions, miners are expected to store a UTXO-set.

Next, we de�ne a sequence of UTXO-sets, which will help us present our construction. Recall that, without loss of
generality, we treat an output of a transaction just as a unique bitstring in {0, 1}∗. Then U is a set of outputs not yet
spent. An application of transaction tx to U removes outputs spent by tx from U , and the application fails if any of
the outputs spent by the transaction is not found in the UTXO-set U , and then adds newly created by tx outputs to U .
This idea can straightforwardly extended for sorted transaction set x , and pseudo-code for this procedure can be found
in the Algorithm 6.

Algorithm 6 UTXO operation ◦.
1: function ◦ ( U`, x`+1 )
2: U`+1 := U`
3: for each transaction tx in x`+1 do . transactions are stored in temporal order
4: for each transaction input Inp in tx do

5: if Inp 6∈ U`+1 then

6: return ⊥
7: else

8: remove Inp from U`+1

9: end if

10: end for

11: add all transaction outputs in tx to U`+1

12: end for

13: return U`+1

14: end function

Jumping ahead, each UTXO-set corresponds to a blockchain length. Let ` denotes the current length. Intuitively,
a UTXO-set Ui of any player P denotes the UTXO set with the length i, where i ∈ [`]. An initial UTXO-set, denoted
as U0 can be updated into a new set U1 by incorporating a set of transactions x1, i.e., U1 := U0◦x1, where operation
◦ is de�ned by Algorithm 6. Similarly, the �rst UTXO-set U1 can be further updated into the secondUTXO-set U2 by
incorporating another set of transactions x2, i.e., U2 := U1◦x2, and further U`+1 := U`◦x`+1 for any transaction set
x`+1. Note that, if we do not interest in a particular length, we ignore the subscript and write U . Also, if we interest in
a particular player Pj ∈ P , where j ∈ [n] and n is the total number of miners, we write U j . Formally, we have

De�nition D.1 (UTXO-set sequence). A sequence of UTXO-sets U = (U0,U1,U2, . . . ,U`), for ` ∈ N, is de�ned by an
ordered sequence of transaction sets x1, x2, . . . , x`, and initial state U0, together with an operation ◦, as follows: (1) U0 is a
publicly known constant, and (2) Ui := Ui−1◦xi for all i ∈ [`].

D.2 Proof of Lemma 6.1

Proof. We need to prove that P1 and P2 have the same transaction set returned by operation N (see Algorithm 1), with
probability at least 1 − ε(κ) under the assumptions that the authenticated data structure Σau (see De�nition C.1) is
collision-resistant, and that γ = λβ and λ > 1.

By Theorem B.3, the generalized blockchain protocol (the underlying header-chain) satis�es the common-pre�x
property with probability at least 1 − e−Ω(κ). Now, suppose by contradiction that x i`−κ+1 = x j`−κ+1, for all pairs of
players (Pi, Pj), with probability at most 1− ζ(κ) where ζ(·) is a non-negligible function, then we need to show there
exists a ppt adversary A′ that can win the collision-resistant experiment with probability at least ζ ′(κ) where ζ ′(·) is
a non-negligible function.

4An output is spent if it is referenced by some transaction in the history, otherwise it is unspent.
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We construct the adversary A′ as follows. The adversary A′ upon receiving input 1κ from its challenger, runs
the execution such that all players have the same UTXO-sets, then when the UTXO-sets are extended to the length
` − κ + 1, let all honest players change to prune mode. Let xi denote the new transaction set that is injected when
player Pi changes to prune mode, for i ∈ [n] (here, n is the number of players in the system). Then randomly choose a
pair of player (P1, P2), and output the pair of transaction sets (x 1

`−κ+1, x
2
`−κ+1).

Since we have x i`−κ+1 = x j`−κ+1, for all pairs (Pi, Pj), with probability at most 1 − ζ(κ). This implies that there
exists a pair (Pi, Pj) such that Pr[x i`−κ+1 6= x j`−κ+1] > ζ Thus,

Pr[x 1
`−κ+1 6= x 2

`−κ+1] >
ζ

n2

where 1
n2 is the probability that P1 = Pi and P2 = Pj . Thus, the adversary A′ that can win the collision-resistant

experiment with a non-negligible probability ζ ′ = ζ
n2 . Therefore, we conclude that x 1

`−κ+1 = x 2
`−κ+1 with probability

at least 1− ε(κ), where ε(·) is a negligible function. It follows that, with probability at least 1− ε(κ)

U1
`−κ+1 = U1

`−κ◦x 1
`−κ+1 = U2

`−κ◦x 2
`−κ+1 = U2

`−κ+1

D.3 Proof of Theorem 6.2

Proof. We prove by induction as follows. Initially, we have SS1
∅ = SS2

∅ = U0. Assume it holds for length `, where P1

and P2 are both in prune mode that
U1
`−κ = U2

`−κ

with probability at least 1− ε(κ). From Lemma 6.1, it holds that

U1
`−κ+1 = U2

`−κ+1

with probability at least 1− ε(κ), where ε(·) is a negligible function. This completes the proof.

TheoremD.2 (prune-mode liveness). Consider the generalized ledger protocolΠprune (see Section 6.1). Let κ be the security
parameter. Assume the authenticated data structure Σau (see De�nition C.1) is collision-resistant. It holds that the execution
in prune-mode Πprune satis�es the snapshot liveness property with probability at least 1 − ε(κ), where ε(·) is a negligible
function.

Proof. The proof for this theorem is straightforward.
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E Supporting material for Section 7

E.1 Proof of Lemma 7.1

Proof. Let S`−κ be the set of all spent transaction outputs in T`, and let G`−κ be the set of all transaction outputs in T`,
i.e., G`−κ := S`−κ ∪ U`−κ. Let SStemp

` := G`−κ. We �rst prove that

Vprune(SS
temp
` �p x ) = Vprune(SS

p
`�px ) (1)

where SSp` := U`−κ and �p := ◦. Now, there are two cases:

• Case 1: If the transaction inputs of a valid transaction tx in x are in U`−κ. Then Equation (1) is true since
U`−κ ⊆ G`−κ.

• Case 2: If the transaction inputs of a valid transaction tx in x are not in U`−κ. In any cases where the transaction
inputs are in S`−κ or not, since S`−κ is the set of all spent transaction outputs, the operation “◦" will output ⊥,
then data validation predicate in prune mode (See Table 2) will return false.

From the two cases, it follows that Equation (1) is true. Then, by the de�nition of the predicate Vfull (See Table 1),
it follows that

Vfull(SS
f
`�f x ) = Vprune(SS

temp
` �p x ) (2)

where SSf` := T` in full and �f := ||. From Equations (1) and (2), we conclude that, for any transaction set x ,

Vfull(SS
f
`�f x ) = Vprune(SS

p
`�px )

E.2 Proof of Theorem 7.2

Proof. Consider any honest player P1 having the generalized chain (with the corresponding snapshot) of length `1 at
round r1 and honest player P2 having the generalized chain (with the corresponding snapshot) of length `2 at round
r2. By the common-pre�x property of the generalized blockchain protocol ( the underlying header-chain), the header-
chain of P2 will be at least as long the header-chain of P1 at round r2 ≥ r1 +∆, i.e., `2 ≥ `1. Consider that `2 = `1 = `,
we then have the following important cases:

• Case 1: If P1 and P2 are both in full mode. Here, the snapshot of P1 in full mode SSf,1` := T 1
` and the snapshot of

P2 in full mode SSf,2` := T 2
` . By Theorem 5.2, we have that T 2

` = T 1
` , with probability at least 1 − ε(κ), where

ε(·) is a negligible function. Thus, for any transaction set x , it follows that

Vfull(SS
f,1
` �f x ) = Vfull(SS

f,2
` �fx )

with probability at least 1− ε(κ), where ε(·) is a negligible function and �f := ||.

• Case 2: If both P1 and P2 are in prune mode. Here, the snapshot of P1 in prune mode SS
p,1
` := U1

`−κ and the
snapshot of P2 in prune mode SSp,2` := U2

`−κ. By Theorem 6.2, we have U1
`−κ = U2

`−κ. Thus, for any transaction
set x , it follows that

Vprune(SS
p,1
` �p x ) = Vprune(SS

p,2
` �px )

with probability at least 1− ε(κ), where ε(·) is a negligible function and �p := ◦.
• Case 3: If P1 or P2 is not in the full mode. Consider player P1 in the full mode and P2 in prune mode. Ini-

tially, we have SS
f,1
∅ = ε and SS

p,1
∅ = U0. By de�nitions of the predicates Vfull(·) and Vprune(·′), it holds that

Vfull(SS
f,1
∅ ) = Vprune(SS

p,2
∅ ) = 1, where SSf,1∅ = ε and SS

p
∅ = U0 denote the initial snapshots in prune and full

modes, respectively.
By the full mode snapshot persistence (Theorem 5.2), it holds that, for any pair of (P1, P2), we have x 1

i = x 1
i ,

for all i ∈ [`− κ], with probability at least 1− ε(κ). We also have the snapshot of P1 in full mode SSf,1` := T 1
` =
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〈x 1
1 , . . . , x

1
`−κ〉, and the snapshot of P2 in prune mode SSp,2` := U2

`−κ = U0◦x 2
1◦ . . .◦x 2

`−κ. From Lemma 7.1, we
conclude that, for any transaction set x , with probability at least 1− ε(κ),

Vfull(SS
f,1
` �f x ) = Vprune(SS

p,2
` �px )

This completes the proof.
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