
Brief Announcement: Statement Voting and Liquid Democracy
Bingsheng Zhang

∗

School of Computing and Communications

Lancaster University, UK

b.zhang2@lancaster.ac.uk

Hong-sheng Zhou

Department of Computer Science

Virginia Commonwealth University, USA

hszhou@vcu.edu

ABSTRACT
The existing (election) voting systems, e.g., representative democ-

racy, have many limitations and often fail to serve the best interest

of the people in collective decision making. To address this issue,

the concept of liquid democracy has been emerging as an alterna-

tive decision making model to make better use of “the wisdom of

crowds”. Very recently, a few liquid democracy implementations,

e.g. Google Votes and Decentralized Autonomous Organization

(DAO), are released; however, those systems only focus on the

functionality aspect, as no privacy/anonymity is considered.

In this work, we, for the �rst time, provide a rigorous study of

liquid democracy under the Universal Composability (UC) frame-

work. In the literature, liquid democracy was achieved via two

separate stages – delegation and voting. We propose an e�cient

liquid democracy e-voting scheme that uni�es these two stages. At

the core of our design is a new voting concept called statement vot-
ing, which can be viewed as a natural extension of the conventional

voting approaches. We remark that our statement voting can be

extended to enable more complex voting and generic ledger-based

non-interactive multi-party computation. We believe that the state-

ment voting concept opens a door for constructing a new class of

e-voting schemes.

CCS CONCEPTS
•Security and privacy → Public key encryption; Mathematical
foundations of cryptography; Distributed systems security;

KEYWORDS
E-voting, UC, Liquid democracy, Statement Voting

1 INTRODUCTION
Elections/Referendums provide people in each society with the op-

portunity to express their opinions in the collective decision making

process. The existing election/voting systems can be mainly divided

into two types, direct democracy and representative democracy. Al-

though the former one treats every voter equally, it is not scalable;

therefore, the latter one is widely used in most countries. However,

representative democracy has many limitations and it often fails to

serve the best interest of the people. For example, to make correct

∗
This work is partially supported by EPSRC IoT Security Research Hub, EP/N023234/1.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

PODC’17, July 25–27, 2017, Washington, DC, USA.
© 2017 ACM. 978-1-4503-4992-5/17/07. . . $15.00.

DOI: http://dx.doi.org/10.1145/XXXXXXX.XXXXXXX

decisions, the voters have to invest tremendous e�ort to analyze

the issues. The cost of identifying the best voting strategy is high,

even if we assume that the voter has collected accurate information.

What’s worse, misinformation campaigns often in�uence the voters

to select certain candidates which could be against the voters’ own

interests. In the past decades, the concept of liquid democracy [6]

has been emerging as an alternative decision making model to make

better use of collective intelligence. Liquid democracy is a hybrid of

direct democracy and representative democracy, where the voters

can either vote directly on issues, or they can delegate their votes

to representatives who vote on their behalf. Due to its advantages,

liquid democracy has received high attentions since the spread of

its concept; however, there is no satisfactory solution in the form of

either paper-voting or e-voting yet
1
. Is it possible to introduce new

technologies to circumvent the implementation barriers to liquid

democracy?

2 A NEW CONCEPT
We could approach the above problem via multiple angles. In this

paper, we propose a new and clean concept: statement voting. State-

ment voting can be viewed as a natural extension of traditional

candidate voting. Instead of de�ning a �xed election candidate,

each voter can de�ne a statement in his or her ballot but leave the

vote “unde�ned” during the voting phase. During the tally phase,

the (conditional) actions expressed in the statement will be carried

out to determine the �nal vote. Single Transferable Vote (STV) is a

special case of statement voting, where the voters rank the election

candidates instead of naming only one candidate in their ballots.

The ranked candidate list together with the STV tally rule can be

viewed as an outcome-dependent statement. Roughly speaking, the

statement declares that if my favorite candidate has already won

or has no chance to win, then I would like to vote for my second

favorite candidate, and so on. In terms of liquid democracy, the

vote delegation can be expressed as a target-dependent statement,

where a voter can de�ne that his/her ballot is the same as the target

voter’s ballot. Of course, the target voter can also state whether

he/she is willing to be delegated in the ballot. To obtain the basic

intuition, let’s �rst leave privacy aside and consider the following

toy example.

Example: Each ballot is in the form of (ID, action, target). If a voter

Vi is willing to be delegated, he/she sets ID := Vi ; otherwise, sets

ID := ⊥. If Vi wants to delegate his/her vote to another voter Vj ,

1
All the existing liquid democracy implementations, e.g., Google Votes and Decen-

tralized Autonomous Organization (DAO) do not consider privacy/anonymity. This

drawback prevents them from being used in serious elections. Here, we note that

straightforword blockchain-based solutions cannot provide good privacy in practice.

Although some blockchains such as Zerocash [1] can be viewed as a global mixer, they

implicitly require anonymous channels. While in practice, all the implementations of

anonymous channels su�er from time leakage, i.e., the user’s ID is only hidden among

the other users who are also using the system at the same time. Subsequently, the

adversary can easily identify the user during quiet hours.

then the ballot is B := (ID, delegate,Vj). If Vi wants to directly

vote for vi , then the ballot is B := (ID, vote,vi). Suppose there

are seven ballots: B1 := (V1, delegate,V7), B2 := (V2, vote,v2),
B3 := (V3, vote,v3), B4 := (⊥, vote,v4), B5 := (V5, delegate,V4),
B6 := (⊥, delegate,V3) and

B7 := (V7, delegate,V3). Here, the e�ective vote of B1 is de�ned

by B7, which is further de�ned by B3; note that B3 votes forv3; that

means, B7 votes for v3 by following B3. Now let’s consider B6: B6

follows B3; however, B6 is not willing to be followed by anyone; as

a result, B6 also votes for v3. Finally, let’s consider B5: B5 follows

B4; however, B4 is not willing to be followed by anyone; as a con-

sequence, B5 is re-de�ned as blank ballot, ⊥. After interpreting the

delegation statements, the �nal votes are (v3,v2,v3,v4,⊥,v3,v3).
Careful readers may wonder why this type of natural voting idea

has never appeared in the physical world. Indeed, it is typically

not available in the real life. Di�erent from the toy example, in the

reality, the voters care about privacy and anonymity. To ensure

anonymity, the voters are not willing to leave their identities in

the ballots. If no identities (or equivalences) are included in the

ballots, then it is di�cult for voters to “follow” other voters’ choices.

The election committees might assign each voter a temporal ID to

achieve anonymity, but a voter needs to obtain the target voter’s

temporal ID in order to delegate his vote. This requires secure peer-

to-peer channels among all the voters, which is not practical. In

“our design” paragraph in the Introduction, we will present the �rst

digital construction for implementing full-�edged liquid democracy.

3 MODELING LIQUID DEMOCRACY VOTING
We for the �rst time provide a rigorous modeling for liquid democ-

racy voting. More concretely, we model liquid democracy voting in

the well-known Universal Composability (UC) framework, via an

ideal functionality FLiqid. The functionality interacts with a set of

voters, trustees, and an auditor, and consists of preparation phase,

voting/delegation phase, and tally phase. During the preparation

phase, the trustees need to indicate their presence to FLiqid, and

the election/voting will not start until all the trustees have partici-

pated the preparation. During the voting/delegation phase, each

voter can either directly vote for the candidate(s) or delegate his

vote to another voter. In addition, each voter can use a �ag α to

indicate whether he is willing to be delegated. Note that, when all

the trustees are corrupted, FLiqid leaks the voters’ ballots to the

adversary.

To model the privacy of mixing type of e-voting, we letFLiqid re-

place each voter’s ID with a pseudonym. The functionality FLiqid

then sorts the anonymized ballots lexicographically to hide the

order correspondence and reveal them to the adversary. Note that

this type of information leakage is consistent with the conventional

paper-based voting system, where a voter submits his ballot to a

ballot box and the ballot is mixed together with the other voters’

ballots. To model end-to-end veri�ability, we introduce an auditor

Au who will verify whether the election result is mis-presented.

Note that the auditor can be performed by any party, and here we

model auditor as a single entity for simplicity.

We emphasize that in practice, virtually all threshold crypto-

graphic systems su�er from selective failure attacks; namely, dur-

ing the opening process of a threshold cryptographic system, the

last several share holders can jointly see the content to be opened

Functionality FLiqid

The functionality FLiqid interacts with a set of voters

V := {V1, . . . , Vn }, a set of trustees T := {T1, . . . , Tk }, an

auditor Au, and the adversary S. Let Vhonest, Vcorrupt and Thonest,

Tcorrupt denote the set of honest/corrupt voters and trustees,

respectively. FLiqid is parameterized by an algorithm TallyProcess,
a table Tab, and variables result, T1, T2, T3, and Bi for all i ∈ [n].

Initially, set result := ∅, T1 := ∅, T2 := ∅, T3 := ∅; for i ∈ [n], set

Bi := ∅.

Preparation:
(1) Upon receiving input (InitialTrustee, sid) from the

trustee Tj ∈ T, set T1 := T1 ∪ {Tj }, and send a noti-

�cation message (InitialTrusteeNotify, sid, Tj) to the

adversary S.

(2) Upon receiving input (InitialVoter, sid, η) from the

voter Vi ∈ V, if |T1 | < k , ignore the input.

Otherwise, send (InitialVoterNotify, sid, Vi) to the ad-

versary S. If |Tcorrupt | = k , then additionally send a mes-

sage (DelLeak, sid, Vi , η) to the adversary S.

Upon receiving (VoterID, sid, Vi , wi) from S,

if Vi ∈ Vcorrupt, then set Tab[i] := wi ;

otherwise, if Vi ∈ Vhonest and η = 0, then set Tab[i] := ⊥;

else, generate random temporal ID w ′i ← {0, 1}λ , and set

Tab[i] := w ′i .
Voting/Delegation:

(1) Upon receiving input (Delegate, sid, Vj) from the voter

Vi ∈ V, if |T1 | < k , ignore the input. Other-

wise, record Bi := (Tab[i], delegate, Tab[j]); send a

message (ExecuteNotify, sid, Vi) to the adversary S.

If |Tcorrupt | = k , then additionally send a message

(Leak, sid, Vi , Delegate, Vj) to the adversary S.

(2) Upon receiving input (Vote, sid, vi) from the the voter

Vi ∈ V, where vi ∈ V and V contains all pos-

sible votes, if |T1 | < k , ignore the input. Other-

wise, record Bi := (Tab[i], vote, vi); send a mes-

sage (ExecuteNotify, sid, Vi) to the adversary S. If

|Tcorrupt | = k , then additionally send a message

(Leak, sid, Vi , Vote, vi) to the adversary S.

Tally:
(1) Upon receiving input (Mix, sid) from the the trustee Tj ∈
T, set T2 := T2 ∪ {Tj }. Send a noti�cation message

(MixNotify, sid, Tj) to the adversary S. If |T2 | = k , do

For i ∈ [n], if Bi is not de�ned, set Bi :=

(⊥, vote, ⊥).

Sort (B1, . . . , Bn) lexicographically to form a new

ballot vector (B̃1, . . . , B̃n).
(2) Upon receiving input (Tally, sid) from the trustee Tj ∈ T2.

Otherwise, set T3 := T3 ∪ {Tj }.
Send a noti�cation message (TallyNotify, sid, Tj) to S.

(3) If |T3 ∩ Thonest | + |Tcorrupt | = k ,

send (Reveal, sid, (B̃1, . . . , B̃n)) to S.

(4) If |T3 | = k ,

compute result ← TallyProcess((B̃1, . . . , B̃n), Tab).
(5) Upon receiving input (ReadResult, sid) from a voter Vi ∈
V, if result = ∅, ignore the input.

Else, return (ResultReturn, sid, result) to Vi .

Figure 1: The voting functionality.

themselves before hand. Hence, they can decide if they want to

actually open the content. However, surprisingly, this subtle issue

was rarely modeled in the literature. For instance, the only previ-

ously known e-voting functionality [7] fails to address it. During

the tally phase, the tally will be released if all the trustees agree

to proceed. The formal description of the ideal functionality is

depicted in Fig. 1 and Fig. 2.

TallyProcess

Input: a set of ballots B := (B1, . . . , Bn) and a set of voter labels

L := (V1, · · · , Vn)

Output: the tally result result

Label Check:
• Check the uniqueness of each label in L. If there exist

i1, . . . , it ∈ [n], i1 , i2 , · · · , it s.t. Vi1 = Vi2 = · · · =
Vit , then replace all the labels Vi1, . . . , Vit in B with ⊥.

Delegation statement interpretation:
• For each ballot Bi ∈ B, parse Bi in form of either

(Vi , delegate, Vj) or (Vi , vote, vi) and do the following:

If Bi is in form of (Vi , delegate, Vj) and Vj , ⊥, try

to locate a ballot Bj in form of (Vj , ·, ·). If founded,

replace Bi := Bj ; otherwise, if Bi is in form of

(Vi , delegate, ⊥) set Bi := (Vi , vote, ⊥).
Repeat the above step, until Bi is in form of

(·, vote, ·). If there is a delegation loop, de�ne

Bi := (⊥, vote, ⊥).

• Denote the processed ballot set as B′ := (B′
1
, . . . , B′n).

Tally computation:
• Compute and return result ← TallyAlg(B′

1
, . . . , B′n),

where TallyAlg(·) is the original tally algorithm.

Figure 2: The extended tally processing algorithm.

4 OUR DESIGN
Our toy example shows that it is possible to interpret the delega-

tion statement by extending the tally algorithm. However, it is not

immediately obvious about how to apply the same technique in

conjunction with privacy. Before the voting/delegation phase, each

voter can pick a temporal ID. However, the main challenge here

is to distribute the temporal ID to the ones who need. The same

as all existing end-to-end veri�able e-voting schemes, our design

requires a publicly accessible consistent bulletin board, modeled as

global functionality
¯GBB. We let the voters post the re-randomizable

RCCA encryption of their temporal ID on the
¯GBB. If voter Vi wants

to delegate his ballot to voter Vj , he can include a re-randomized

ciphertext of Vj ’s temporal ID. More speci�cally, Vi sets his ballot

as Bi := (wi , delegate,Wj), if he wants to delegate to Vj ; or he sets

Bi := (wi , vote,vi), if he wants to vote for vi ; here wi is Vi ’s tem-

poral ID andWj is the re-randomized ciphertexts of Vj ’s temporal

ID. All the ballots will �rst be shu�ed via a mix-net, and then all the

trustees will jointly open those re-randomized ciphertexts inside

the ballots. Subsequently, we can handle the delegation statement

and compute the tally in the same way as the toy example. In the

full version, we also show how to implement the liquid democracy

voting scheme with re-randomizable threshold public key encryp-

tion (such as threshold ElGamal encryption) together with some

necessary non-interactive proofs.

5 DISCUSSION AND FURTHER REMARKS.
In this work, we initiate the study of statement voting and liquid

democracy. We remark that our statement voting concept can be

signi�cantly extended to support much richer ballot statements.

It opens a door for constructing a new class of e-voting schemes.

We also remark that this area of research is far from being com-

pleted, and our design and modeling ideas can be further improved.

For example, if there is a delegation loop in which a set of voters

delegate their votes to each other while no one votes, then what

should be the “right” policy? Should the ballots be reset as blank

ballots? This might not be ideal in reality. One possible approach is

to extend the delegation statement to include a default vote. When

a delegation loop exists, the involved ballots could be counted as

their default votes. We �nally remark that, voting policies can be

heavily in�uenced by local legal and societal conditions. How to

de�ne “right” voting policy itself is a very interesting question. We

believe our techniques here have the potential to help people to

identify suitable voting policies which can further eliminate the

barriers to democracy.

We remark that most non-trivial functionalities (including the

e-voting functionality) cannot be UC-realized in the plain model

[3–5]. Typically, we need trusted setup assumptions for UC secure

e-voting systems, and the Common Reference String (CRS) model

and the (Random Oracle) RO model are two common choices. In

practice, if an e-voting system uses CRS, then we need to trust the

party (parties) who generate(s) the CRS, which, in our opinion, is

a stronger assumption than believing no adversary can break a

secure hash function, e.g., SHA3. Therefore, we will realize our

liquid democracy voting system in the RO model.

Alternative approach is as follows: we �rst use multiple party

computation to generate a CRS; then we construct liquid democracy

voting system by using the CRS. This approach has previously been

used for constructing anonymous cryptocurrency Zerocash [1];

please see Ben-Sasson et al’s recent e�ort [2]. We remark that,

this approach might be problematic for cryptocurrency systems:

typically a cryptocurrency system will last for many years and

it is very di�cult to ensure there is no attack on the CRS during

this long time period. Interestingly, this limitation does not apply

to liquid democracy voting systems. If there is an issue with the

current CRS, we can use MPC to generate a new CRS.

REFERENCES
[1] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,

Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized Anonymous

Payments from Bitcoin. In 2014 IEEE Symposium on Security and Privacy. IEEE

Computer Society Press, 459–474.

[2] Eli Ben-Sasson, Alessandro Chiesa, Matthew Green, Eran Tromer, and Madars

Virza. 2015. Secure Sampling of Public Parameters for Succinct Zero Knowledge

Proofs. In 2015 IEEE Symposium on Security and Privacy. IEEE Computer Society

Press, 287–304.

[3] Ran Canetti. 2001. Universally Composable Security: A New Paradigm for

Cryptographic Protocols. In 42nd FOCS. IEEE Computer Society Press, 136–145.

[4] Ran Canetti and Marc Fischlin. 2001. Universally Composable Commitments. In

CRYPTO 2001 (LNCS), Vol. 2139. Springer, Heidelberg, 19–40.

[5] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. 2003. On the Limitations of

Universally Composable Two-Party Computation without Set-up Assumptions.

In EUROCRYPT 2003 (LNCS), Vol. 2656. 68–86.

[6] Bryan Ford. 2002. Delegative Democracy. Manuscript. http://www.brynosaurus.

com/deleg/deleg.pdf.

[7] Jens Groth. 2004. Evaluating Security of Voting Schemes in the Universal Com-

posability Framework. In ACNS 04 (LNCS), 46–60.

http://www.brynosaurus.com/deleg/deleg.pdf
http://www.brynosaurus.com/deleg/deleg.pdf

	Abstract
	1 Introduction
	2 A New Concept
	3 Modeling liquid democracy voting
	4 Our design
	5 Discussion and further remarks.
	References

