Anonymity in Cryptocurrencies Foteini Baldimtsi

10. Privacy

The traditional banking model achieves a level of privacy by limiting access to information to the parties involved and the trusted third party. The necessity to announce all transactions publicly precludes this method, but privacy can still be maintained by breaking the flow of information in another place: by keeping public keys anonymous. The public can see that someone is sending an amount to someone else, but without information linking the transaction to anyone. This is similar to the level of information released by stock exchanges, where the time and size of individual trades, the "tape", is made public, but without telling who the parties were.

Satoshi Nakamoto, 2008

Quantitative Analysis of the Full Bitcoin Transaction Graph

Dorit Ron and Adi Shamir

Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Israel {dorit.ron,adi.shamir}@weizmann.ac.il

> or the public ledger that records bit bitcoins move from one person to a alphanumeric addresses.

A Fistful of Bitcoins: Characterizing Payments Among Men with No Names

Sarah Meiklejohn Marjori Pomarole Grant Jordan ill Levchenko Damon McCoy[†] Geoffrey M. Voelker Stefan Savage

University of California, San Diego George Mason University[†]

Evaluating User Privacy in Bitcoin

Elli Androulaki¹, Ghassan O. Karame², Marc Roeschlin¹, Tobias Scherer¹, and Srdjan Capkun¹

If anyone is ever able to link your Bitcoin address to your real world identity, then all of your transactions — past, present, and future — will have been linked back to your identity.

De-anonymizing Bitcoin users

Bitcoin De-anonymization in Practice

Anonymity: the goal

Adversarial Bank cannot link a withdrawal to a deposit

unlinkability

Bitcoin

Block 51	Block 52	Block 53	Block 54
Proof of work: 0000005857vvv	Proof of work: 000000zzxxzx5	Proof of work: 00000090641bx	Proof of work: 000000/J93xq49
Previous block: 000000432g/za1	Previous block: 0000009657vvv	Previous block: 000000zznvzo5	Previous block: 00000090b41bs
Transacton Is54Hxx Transacton 08045w1d Transacton we4212x32	Transaction dd5g31bm	Transacton 94/kcv14	Transaction 655(b)4/12
	Transacton 22qux987	Transacton abb7boxq	Transaction bri24xa0201
	Transactori 001Hk009	Transactor	Alice -> Bob

It should be hard to link the sender of a payment to its recipient

Ledger

Break the link between payer and payee

Anonymity Flavors

Set Anonymity: the set of transactions which the adversary cannot distinguish from your transaction (depends on anonymity model)

Two Main Directions

1) Mixing/Tumbler Services (for Bitcoin)

2) Anonymous Cryptocurrencies

Non-– Compatible to Bitcoin

Why do we need anonymity

- achieve the level of privacy that we are already used to from traditional banking, and mitigate the deanonymization risk that the public blockchain brings.
- go above and beyond the privacy level of traditional banking and develop currencies that make it technologically infeasible for anyone to track the participants.

PART I Mixing/Tumbler Services

What is a mix?

- Centralized (intermediary)
- Decentralized (i.e. Coinshuffle)

What is a mix?

2 challenges

- privacy against intermediary
- security against intermediary

Attempt 1 - Centralized Scheme

Intermediary blindly issues vouchers?

Goal: Set-Anonymity

Intermediary cannot link a voucher it issued to a voucher it redeems!

Blind signatures

Attempt 1 - Centralized Scheme

Intermediary blindly issues vouchers? Goal: Set-Anonymity

Intermediary cannot link a voucher it issued to a voucher it redeems!

Blind signatures

Attempt 2 - Centralized Scheme

Intermediary blindly issues vouchers?

Attempt 2 - Centralized Scheme

Intermediary blindly issues vouchers?

Blindly Signed Transaction Contracts Goal: Set-Anonymity, Fair Exchange/Atomic swaps

Alice

"Here is 😈 ."

Fair exchange is robust if either party is malicious!

Bitcoin Scripts*

* The blind signature we use requires a soft fork

Attempt 3 - centralized scheme

Blindly Signed Transaction Contracts

Attempt 3 - centralized scheme

Blindly Signed Transaction Contracts

Goal: Set-Anonymity, Fair Exchange

Blindly Signed Transaction Contracts

- 1.
- 2. **Transparency of Anonymity Set.**

Anonymity vs Malicious Intermediary?

What if intermediary aborts all but one transaction?

- 1. Small anonymity set is visible on the blockchain.
- Addr_B is ephemeral; If anonymity set is too small anonymously send it a new ephemeral addr (rinse & repeat).

Anonymity vs Malicious Intermediary?

What if intermediary distort anonymity set transparency with sybils?

- Expensive due to sybil resistance:
 - Intermediary pays all transaction fees for each sybil.
- Low success rate:
 - If intermediary waits until it sees Alice's address to abort, Alice and Bob can detect attack.
 - If intermediary launches the attack earlier, it only sees Bob's address which is an ephemeral address (untargeted).

Background: Bitcoin Transaction Contracts

Goal: Fair Exchange/Atomic swaps:

Bitcoin transaction scripts are very limited. We can only check two types of cryptographic conditions C:

Hash(X) = Y,
 ECDSA_CheckSignature(Tx, PUBLIC_KEY) = TRUE

Big Picture

PART II Anonymous Decentralized Cryptocurrencies

Anonymous Decentralized Cryptocurrencies

Zerocoin: Anonymous Distributed E-Cash from Bitcoin

Ian Miers, Christina Garman, Matthew Green, Aviel D. Rubin The Johns Hopkins University Department of Computer Science, Baltimore, USA {imiers, cgarman, mgreen, rubin}@cs.jhu.edu

Almost a decentralized mixing service

performance issues and limited functionality

Zerocash: Decentralized Anonymous Payments from Bitcoin (extended version)

Eli Ben-Sasson^{*} Alessandro Chiesa[†] Christina Garman[‡] Matthew Green[‡] Ian Miers[‡] Eran Tromer[§] Madars Virza[†]

Standalone cryptocurrency

Zerocoin - main idea

Requires a trusted, append only bulletin board (it could be the Bitcoin blockchain)

How to compute the proof $\boldsymbol{\pi}$

Redeem

compute a NIZK π :

- I know Ci in (C1,C2,..,CN)
- I know r to open Ci to SN Post (SN, π)

Naive Solution

Identify all valid zerocoins in the bulletin board

Prove that SN is the serial number of a coin C $C = C1 \vee C = C2 \vee ...C=CN$

This "OR" proof is O(N)

How to compute the proof $\boldsymbol{\pi}$

Cryptographic Accumulators

RSA modulus $n = p \cdot q$, $u \in QR_N$

Accumulator: $A = u^{C1 C2 ...CN} \mod n$ witness for C2: $w = u^{C1 C3 ...CN} \mod n$

To prove that C2 is in A give (w,C2) check: $w^{C2} = A \mod n$

This is not anonymous!

How to compute the proof $\boldsymbol{\pi}$

Cryptographic Accumulators

RSA modulus n = $p \cdot q$, u $\in QR_N$

Accumulator: $A = u^{C1 C2 ...CN} \mod n$ witness for C2: $w = u^{C1 C3 ...CN} \mod n$

To prove that C2 is in A give (w,C2) check: $w^{C2} = A \mod n$

There exists an efficient proof (NIZK) that I have a valid witness to a commitment of SN and know the corresponding randomness r [CL'02] cost log (N)

Problems with Zerocoin

- Accumulators require a trusted setup (somebody to compute N and throw away p,q)
- Proofs not very efficient log(N)
 Each proof is approximately 50 KB) note the scaling problems of Bitcoin
- Not compatible with bitcoin these new types of transactions should be included - you would need to be able to verify sophisticated ZK proofs
- Payments of **single denomination and** payment values appear in **the clear** (1 BTC)

Solves the problems above*

Zerocash

Zerocash enables users to pay one another directly via payment transactions of variable denomination that reveal neither the origin, destination, or amount.

- reduces the size of transactions spending a coin to under 1 kB (an improvement of over 97:7%)
- reduces the spend-transaction verification time to under 6 ms (an improvement of over 98:6%)
- allows for anonymous transactions of variable amounts
- hides transaction amounts and the values of coins held by users
- allows for payments to be made directly to a user's xed address (without user interaction).

How does it do it?

zk-SNARKS Zero Knowledge Succinct Non Interactive Arguments of Knowledge

Allows to:

- hide transaction value inside the commitment
- split and merge transactions

Use of zk-SNARKS for Bitcoin also suggested by DFKP13

A few things about zk-SNARKS

Create efficient proofs for NP statements

construct an arithmetic circuit for the statement to be proved

How are they different from NIZKs?

- Both need trusted setup & provide same guarantees (completeness, proof of knowledge, ZK)
- Proof length depends only on the security parameter and verification time on instance size (not on circuit)
- Security relies in very strong assumptions (knowledge-of-exponent)

thank you!

Resisting DoS and Sybil Attacks.

Resisting DoS and Sybil Attacks.

* Inspired by the fees used by XIM [1] to resist DoS and Sybil attacks. [1]: 'Sybil-resistant mixing for bitcoin.' Bissias, Ozisik, Levine, Liberatore.

Zerocoin - main idea

Implementing BB with Bitcoin

Recall how Bitcoin transactions work

Zerocoin - main idea

Implementing BB with Bitcoin

Minting a zerocoin of value d: Alice

creates a transaction and includes commitment C to output. The bitcoin value is put into escrow

Spending a zerocoin: Alice creates a transaction that spends any unclaim bitcoin on escrow to Bob and also includes (SN, π). Successful if π verifies.

