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Selfish Mining

Figure: State machine with transition frequencies

Stategy 1

When the selfish miner’s branch is 1 blocks ahead, the selfish
miner release entire branch immediately.



Selfish Mining

Figure: State machine with transition frequencies

Stategy 2

When the selfish miner’s branch is 2 blocks ahead, instead of
keeping her own branch private from the public, the selfish miner
now with probability 0.2 reveals her entire branch immediately.



Selfish Mining Strategy

1 blocks ahead...
A miner with computational power at least 33% of the total power,
provides rewards strictly better than the honesty strategy[2]

2 blocks ahead.....?

3 blocks ahead.....?

Which strategy is the optimal corresponding to the
computational power?

What can we do?



Blockchain Mining Games

Game-theoretic provide a systematic way to study the strengths
and vulnerabilities of bitcoin digital currency[1].

Game-theoretic abstraction of Bitcoin Mining

I Miner 1 is the miner whose optimal strategy (best response)
we wish to determine(α)

I Miner 2 is assumed to follow the Honesty strategy or Frontier
Strategy (Follow the longest chain) (β) α + β = 1.

I the reward r∗ and computational cost c∗

I the depth of the game d , after d new blocks attached to the
chain, the reward will be paid for this block.



Game-theoretic abstraction of Bitcoin Mining

Sate

I A public state is simply a rooted tree. Every node is labeled
by one of the players;

I A private state of a player i is similar to the public state
except it may contain more nodes called private nodes and
labeled by i.

We consider complete-information games (the private states of all
miners are common knowledge).



Game-theoretic abstraction of Bitcoin Mining

Selfish (rational) miners want to know

I which block to mine

I when to release a mined block

Strategy of a player (miner) i

I the mining function µi selects a node of the current public
state to mine

I the release function ρi determines the section of the private
states is added to the public state

I Notation: follow the longest chain is Honesty strategy
(Frontier strategy)



Immediate-Release Game

Figure: Typical State



Immediate-Release Game

Mining states

The set M, both miners keep mining their own branch. (0,0)∈ M

Capitulation states

The set C, miner 1 gives up on his branch and continues mining
from some block of the other branch. e.g., when the game is
truncated at depth d, the set contains (a,d) for a=0,.....,d.

Wining state

The set W of states in which Miner 2 capitulates, Miner 2 honesty
(plays Frontier) W = {(a, a− 1) : a ≥ 1}.



Immediate-Release Game)

Figure: Upper-left green aprt is the set Capitulation states, red line of
Wining states, orange part of Mining state



Immediate-Release Game

What happens when miner 1 capitulates?

I Miner 1 will abandons his private branch, he can choose to
move to any state (0,s).

I Then set of deterministic strategies of Miner 1 is set of pairs
(M,s), M is set of mining set.



Immediate-Release Game

Expected gain of Miner 1

I gk(a, b) denote the expected gain of Miner 1, when the
branch of the honest miner in the tree is extended by k new
levels starting from an initial tree in which Miner 1 and 2 have
lengths a and b respectively.

I Then, for large k, k
′
. we have

gk(a, b)− gk ′ (a, b) = g∗(k − k
′
) (1)

g∗ represents the expected gain per level

I gk(a, b) = kg∗+ψ(a, b)
ψ(a, b) the potential function denote the advantage of Miner
1 for currently being at state (a,b)



Immediate-Release Game

The objective of Miner 1 is to maximize g∗

For a strategy (M,s)

I If (a,b)∈ M, Miner 1 succeeds to mine next block first with
probability α, then new state is (a+1,b);

I If (a,b)∈ C, Miner 1 abandons his branch and the new state is
(0,s).

I If (a,b) ∈ W, Miner 2 abandons his branch and the new state
is (0,0).



Immediate-Release Game

From above consideration and p = α, 1− p = β, we have



Immediate-Release Game

Definition

I Let r(M,s)(a, b) denote the wining probability starting at state
(a,b),

I Let r(a, b) denote the optimal strategy (M,s).

Lemma 1 For every state (a,b)

r(a, b) ≤ (
α

β
)1+b−a (2)

1+b-a captures the distance of state (a,b) and wining state.



Immediate-Release Game

Lemma 2 For every state (a,b) and every nonnegative integers
c and k

gk(a + c , b + c)− gk(a, b) ≤ cr(a + c , b + c) (3)

Lemma 2 provide a useful relation between expected optimal gain
and the wining probability.

Corollary 1. For every state (a,b) and every nonnegative
integer c

ψ(a, b) ≥ ψ(a + c, b + c)− cr(a + c, b + c) (4)

Corollary 1 provide a useful relation between the potential function
and the wining probability.



Immediate-Release Game

Lemma 3 For every α, we have

ψ(0, 0) + r(1, 1) ≥ ψ(1, 1) ≥ αψ(2, 1) + βψ(1, 2)− g∗β (5)

Then we have

ψ(1, 2) ≤ 2α2 − α
(1− α)2

+ g∗ 1

1− α
(6)



Immediate-Release Game

Similarly, we have

Lemma 4 For α ≤ 0.382, if state (0,2)∈ M , we have

Then we have

ψ(0, 2) ≤ 2α2 − (1− α)3

(1− α)2
(7)

For α ≤ 0.36 state (0,2) is not a mining state

Lemma 5 For α ≤ 0.382, if state (0,1)∈ M , then (0,2) is also
a mining state and

ψ(0, 1) ≤ βψ(0, 2)− α1− 3α + α2

(1− α)
(8)

For α ≤ 0.36 state (0,2) is not a mining state



Immediate-Release Game Results

Lemma 6 Honesty Strategy is a best response for Miner 1 iff
ψ(0, 1) = ψ(0, 0)

Theorem 1, In the immediate-release model, Honesty strategy
is a Nash equilibrium when every miner computational power
less than 0.36

Theorem 2, In the immediate-release model, the best response
strategy for Miner 1 is not honesty strategy when
computational power larger than 0.455



The Strategic-Release Game Results

Contrary to the immediate-release case, the state (a,b) could
be that a is strictly larger than b + 1

Similarly, we have

Theorem 3, In the Strategic-Release model, Honesty strategy
is a Nash equilibrium when every miner computational power
less than 0.308
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